ISSN 1600-5368

Qian-Jun Deng,^a Ming-Hua Zeng,^b Hong Liang,^b* Seik Weng Ng^c and Ke-Long Huang^a

 ^aSchool of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan
^bDepartment of Chemistry and Chemical
Engineering, Guangxi Normal University,
Guilin, Guangxi 541004, People's Republic of
China, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: zmhzsu@163.com

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.028 wR factor = 0.082 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 17 February 2006

Accepted 3 May 2006

catena-Poly[[[diaquamanganese(II)]bis(μ -1Hbenzimidazole-5-carboxylato)- $\kappa^2 N^3$:O; $\kappa^2 O$: N^3] dihydrate]

In the crystal structure of the title compound, {[Mn- $(C_8H_5N_2O_2)_2(H_2O)_2$]·2H₂O}_n, two 1*H*-benzimidazole-5carboxylate anions bridge two adjacent water-coordinated Mn cations to furnish a linear chain; the Mn atom lies on a crystallographic inversion centre. Adjacent chains are linked through the Mn cations and the coordinated and uncoordinated water molecules into a three-dimensional network motif.

Comment

An enormous number of transition metal heteroarylcarboxylates having a Lewis basic nitrogen donor have been structurally documented (Allen, 2002). The 5-benzimidazolylcarboxylate ion, by virtue of the position of the carboxylic substituent, could function as a bridging ligand. In the present manganese(II) complex, (I) (Fig. 1), two of the anions link adjacent water-coordinated manganese cations into a chain (Fig. 2). The chain adopts a helical conformation as it propagates by screw-axis operations along the c axis of the monoclinic unit cell. Adjacent chains are consolidated into a tightly held three-dimensional network by hydrogen bonds (Fig. 3 and Table 2). The compound has the same structure as the reported cobalt(II) derivative (Liu *et al.*, 2005), which has been described in detail.

Experimental

The compound was synthesized from manganese dichloride hexahydrate (0.083 g, 0.5 mmol), benzimidazole-5-carboxylic acid (0.162 g, 1.0 mmol), sodium hydroxide (0.04 g, 1.0 mmol), triethylamine (0.5 ml, excess) and water (16 ml). The mixture was heated in a Teflon-lined stainless steel autoclave for 144 h at 423 K. The autoclave was cooled to room temperature over a period of 12 h at 100 K h⁻¹; the compound separated as pale-yellow columnar crystals in about 20% yield.

© 2006 International Union of Crystallography All rights reserved

Figure 1

The octahedral geometry of Mn in (I). Displacement ellipsoids are drawn at the 50% probability level and dashed lines indicate hydrogen bonds. [Symmetry code: (A) 1 - x, 1 - y, 1 - z; (B) $x, 1 - y, z - \frac{1}{2}$; (C) $1 - x, y, z - \frac{1}{2}$; (-z.

Figure 2

View of the one-dimensional chain in (I), running along the b axis. Hydrogen bonds are shown as dashed lines.

Figure 3

Packing diagram of (I). Hydrogen-bond interactions are shown as dashed lines and only O-bound H atoms are displayed for clarity.

Crystal data

$[Mn(C_8H_5N_2O_2)_2(H_2O)_2] \cdot 2H_2O$
$M_r = 449.28$
Monoclinic, $C2/c$
a = 16.246 (2) Å
b = 9.076 (1) Å
c = 14.198(2) Å
$\beta = 119.543 \ (2)^{\circ}$
V = 1821.4 (4) Å ³

Z = 4 $D_x = 1.638 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $\mu = 0.78 \text{ mm}^{-1}$ T = 295 (2) K Column, light yellow $0.35 \times 0.15 \times 0.10$ mm

Data collection

Bruker SMART 1K area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.707, T_{\rm max} = 0.926$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0518P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.028$ wR(F²) = 0.082 S = 1.02 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ Å}^{-3}$ 1966 reflections $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$ 153 parameters H atoms treated by a mixture of

independent and constrained refinement

Table T				
Selected	geometric	parameters	(Å,	°).

2.250(1)Mn1 = O12 222 (1) Mn1 - N1Mn1 - O1W $Mn1-N1^{ii}$ 2.250 (1) 2.189(1) $O1 - Mn1 - O1^{iii}$ 84.43 (5) 180 O1-Mn1-N1ⁱⁱ $O1W-Mn1-O1W^{iii}$ O1 - Mn1 - O1W93.15 (5) 180 $O1 - Mn1 - O1W^{iii}$ 86.85 (5) O1W-Mn1-N1i 83.93 (5) $O1W-Mn1-N1^{ii}$ O1-Mn1-N1ⁱ 95.57 (5) 96.07 (5) Symmetry codes: (i) $x, -y + 1, z - \frac{1}{2};$ (ii) $-x+1, y, -z+\frac{3}{2};$ (iii) -x + 1, -y + 1, -z + 1.

4919 measured reflections 1966 independent reflections 1667 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.014$ $\theta_{\rm max} = 27.0^{\circ}$

> + 0.9912P] where $P = (F_0^2 + 2F_c^2)/3$

Table 2			
Hydrogen-bond geometry	(Å,	°).	

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W - H1W1 \cdots O2^{iii}$	0.84 (1)	1.92 (1)	2.716 (2)	159 (2)
$O1W - H1W2 \cdots O2W$	0.84 (1)	1.87 (1)	2.707 (2)	176 (2)
$O2W - H2W1 \cdots O1^{ii}$	0.85(1)	1.92 (1)	2.770 (2)	176 (3)
$O2W - H2W2 \cdot \cdot \cdot O2^{iv}$	0.85(1)	1.98 (1)	2.810(2)	165 (3)
$N2-H2N\cdots O2^{v}$	0.85 (1)	1.98 (1)	2.823 (2)	171 (2)

Symmetry codes: (ii) -x + 1, y, $-z + \frac{3}{2}$; (iii) -x + 1, -y + 1, -z + 1; (iv) $x - \frac{1}{2}$, $y - \frac{1}{2}$, z; (v) $x, -y + 2, z + \frac{1}{2}$

The C-bound H atoms were positioned geometrically (C-H =0.93 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to $1.2U_{eq}(C)$. The water and amine H atoms were located in difference Fourier maps, and were refined with distance restraints giving O-H = 0.84 (1)-0.85 (1) Å $[U_{iso}(H) =$ $1.5U_{eq}(O)$] and N-H = 0.85 (1) Å $[U_{iso}(H) = 1.2U_{eq}(N)]$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: atomic coordinates taken from the Co analogue (Liu et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXL97.

The authors thank the Natural Science Foundation of Guangxi Province (0447019) and the University of Malaya (F0712/2005c) for supporting this work.

1 3 0 4			
m1294	Deng et al.	•	$[Mn(C_8H_5N_2O_2)_2(H_2O)_2]\cdot 2H_2O$

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Liu, Z., Chen, Y., Liu, P., Wang, J. & Huang, M.-H. (2005). *J. Solid State Chem.* **178**, 2306–2312.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1996). SHELXL97. University of Göttingen, Germany.Sheldrick, G. M. (2000). SHELXL97. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.